靶材是通过磁控溅射、多弧离子镀或其他类型的镀膜系统在适当工艺条件下溅射在基板上形成各种功能薄膜的溅射源。简单的说,靶材就是高速荷能粒子轰击的目标材料,用于高能激光器中,不同功率密度、不同输出波形、不同波长的激光与不同的靶材相互作用时,会产生不同的破坏效应。更换不同的靶材(如铝、铜、不锈钢、钛、镍靶等),即可得到不同的膜系(如超硬、耐磨、防腐的合金膜等)。
将铁磁性靶材的厚度减薄是解决磁控溅射铁磁材料靶材的常见方法。如果铁磁性靶材足够薄,则其不能全屏蔽磁场,一部分磁通将靶材饱和,其余的磁通将从靶材表面通过,达到磁控溅射的要求。这种方法的缺点是靶材的使用寿命过短,同时靶材的利用率很低。而且薄片靶材的另一个缺点是溅射工作时,靶材的热变形严重,往往造成溅射很不均匀。
对铁磁性靶材进行改进设计在靶材表面刻槽,槽的位置在溅射环两侧。这种设计的靶材适用于具有一般导磁率的铁磁性靶材,例如镍。但对具有高导磁率的靶材料效果较差。虽然靶材的这种改进增加了靶材的成本,但这种措施无需对溅射阴极进行改动,能在一定程度上满足溅射铁磁性材料的需求。
增强溅射阴极磁场的另一种方法是采用高强磁体,通过强磁场饱和更厚的铁磁性靶材得到靶材表面需要的溅射磁场强度。但是高强磁铁的价格昂贵,同时采用这种方法增加靶材厚度的效果有限,而且由于强永磁体大小不能改变,这种方法会引起严重的等离子体磁聚现象。等离子体磁聚现象的产生使溅射区靶材很快消耗完而不能继续溅射,从而造成靶材利用率很低。采用电磁线圈来产生高强磁场,通过调节电磁线圈的电流控制磁场大小来抑制等离子体磁聚。但这种方法的磁场装置复杂而且成本高,同时电磁线圈还受到溅射阴极尺寸的限制,从而使电磁场的强度受到限制,导致铁磁性靶材的厚度增加有限。
还可用永磁体与电磁体复合的方法解决等离子体磁聚的问题,在不同的溅射过程中调节电磁线圈,以产生大小合适的电磁场。